

Large Utilities ADAS Safety Comparison

INAUGURAL INSIGHTS

NOVEMBER 2025

Large Utilities ADAS Safety Comparison

FIRST LOOK

Large utilities have become increasingly popular in Australia, with a range of manufacturers offering models to support growing consumer demand

Sometimes referred to as **pickup trucks**, these vehicles were traditionally designed for towing or hauling heavy loads such as caravans, boats, large equipment, or animal trailers.

These larger utilities (utes) are now commonly seen in everyday use, driven by families and tradespeople in metropolitan areas as well as on rural and regional roads.

Their physical size and greater mass has been raised as a potential concern for other motorists and road users, including pedestrians, cyclists and motorcyclists.

To help consumers and fleets consider the comparative safety of models in this large utility segment, we've put a selection of popular new models to the test.

This inaugural independent assessment examines the availability and performance of active collision avoidance safety systems, with a particular focus on vulnerable road user protection.

Designed to encourage and accelerate the standard fitment of these technologies across the large utility market segment, this new assessment program aims to drive broader adoption of active **crash avoidance** systems and improve road safety.

An overall safety grading of Platinum, Gold, Silver, Bronze, or Not Recommended is awarded to each model tested.

An expanding safety focus

For more than 30 years, ANCAP SAFETY has been testing and rating the safety performance of passenger cars and SUVs (MA and MC category vehicles), and light commercial vans and utes (NA category).

In that time, the availability of independent, objective safety information has driven major improvements in crash protection and crash avoidance across these market segments – directly contributing to reductions in road trauma.

ANCAP's scope since its inception in 1992 has included single, dual-cab and cab-chassis utes. Testing has generally focussed on vehicles with a Gross Vehicle Mass (GVM) of up to 3.5 tonnes. These **smaller utes** have consistently dominated the Australian automotive landscape.

In 2024, three of the smaller ute models ranked among the top ten selling vehicles in Australia, with a combined sales volume of 127,830 units.¹ Importantly for consumers, each of these models held ANCAP's maximum five-star safety rating.²

Extending beyond the top ten sellers, in 2024 there were 12 ute models on sale in Australia that were rated within ANCAP's traditional safety rating scope. All but one of these models has demonstrated five-star performance.

Utes hold a unique place in the Australian market, valued by tradespeople, families and fleets. While many are purchased to cart, carry, load and tow, they have also become lifestyle vehicles.

For some, a ute is both a weekday workhorse and a weekend leisure vehicle. For others, it is simply a vehicle of choice or a reflection of personal brand.

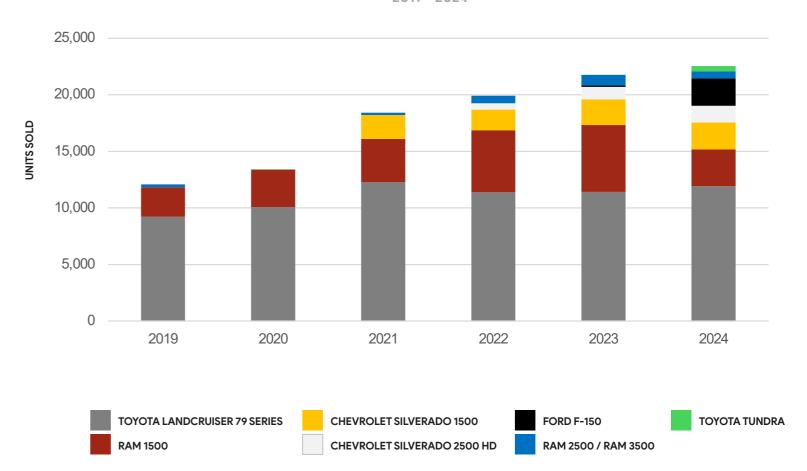
This multi-use appeal has broadened their popularity, as the sales figures show.

With the safety performance of smaller utes well established, and five-star ratings commonplace, attention is turning to the next frontier: large utilities.

These vehicles - often exceeding the size, weight and road presence of their lighter counterparts - have transitioned from niche imports to mainstream use.

Their growing prevalence on Australian roads raises important questions about their interactions with other road users, and the level of protection – or potential risk – they provide to their occupants, other motorists, and vulnerable road users.

Extending safety assessment to larger utilities is essential to provide objective information and clarity in an untested segment.


Top-selling ute models in 20243:

- 1. Ford Ranger
- 2. Toyota HiLux
- Isuzu D-Max
- 4. Mitsubishi Triton
- **5.** Mazda BT-50
- . Toyota Landcruiser 79 Series
- 7. Nissan Navara
- 8. Volkswagen Amarok
- 9. GWM Ute / Cannon
- **10.** LDV T60
- **11.** RAM 1500
- **12.** KGM SsangYong Musso
- **13.** Ford F-150
- **4.** Chevrolet Silverado 1500
- 5. Chevrolet Silverado 2500 HD
- 6. GWM Cannon Alpha
- **17.** RAM 2500
- 18. Jeep Gladiator
- **19.** Toyota Tundra
- **20.** RAM 3500

Ineos Grenadier Quartermaster*

AUSTRALIAN NEW VEHICLE SALES PICKUP / CAB-CHASSIS SEGMENT NA OVER 7.0 TONNES GCM & NB MODELS

2019 - 2024

* Sales figures not available for Ineos Grenadier Quartermaster.

The opportunity

ANCAP has embarked on this first-look analysis of large utilities to:

SHINE A LIGHT ON CRASH AVOIDANCE

Focus on safety features and technologies that can help prevent crashes and reduce injury to vulnerable road users

ESTABLISH A SEGMENT BENCHMARK

Understand the safety specification and performance of new models, creating a baseline for fleet and consumer comparison and assist policymakers

BUILD COMMUNITY AND INDUSTRY AWARENESS

Highlight the availability and performance of active safety features across the large ute segment

ACCELERATE SAFETY IMPROVEMENTS

Apply independent scrutiny to ensure safety remains a priority for all manufacturers across all vehicle segments

ESTABLISH A FRAMEWORK FOR FUTURE RATING EXPANSION AND ASSESSMENTS

Consider the need and benefits of a broader test and rating approach

The numbers

PUBLIC INTEREST

The growing popularity of larger pickup-style utes has prompted heightened public interest.

Sentiment is often divided, with speculation and anecdotal views suggesting these vehicles pose a higher risk and are less safe than the smaller passenger cars they share the road with.

The increasing presence of large utes - often in built-up **urban** areas - has heightened community concern, particularly for pedestrian and cyclist safety.

ROAD FATALITIES

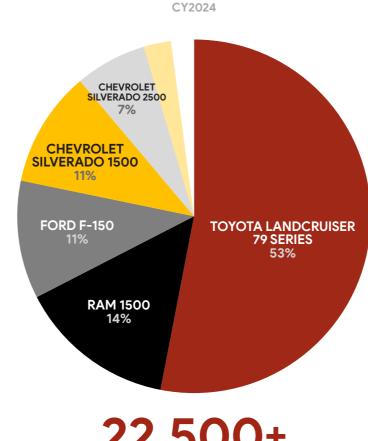
Addressing these issues poses a challenge, as unified national road fatality and serious injury data capturing large utes is not currently available. This makes it difficult to quantify whether these vehicles play a more significant role in road trauma than the smaller ute category, or passenger vehicles more broadly.

Jurisdictional data is available from a limited number of states, yet with the popularity and market presence of these vehicles trending upwards only in recent years, their representation in road fatality statistics is not broad enough to draw statistically significant insights across the wider market.

In the United States, however, data shows fatal pedestrian crashes involving pickups are **four times more likely** to occur during a turn than those involving cars⁴; and vehicles with bonnet heights above one metre are approximately **45% more likely** to cause pedestrian fatalities⁵.

These insights underline the importance of monitoring our local market closely.

MARKET COVERAGE


Large utilities have seen a steep rise in popularity in recent years, with sales of RAM Trucks⁶, Chevrolet Silverado, Ford F-150 and Toyota Tundra increasing by 270% since 2019.⁷

As larger utes continue to gain popularity in Australia, it is important to understand their growing presence and ensure safety performance keeps pace with local consumer expectations.

22,500 large utes⁸ were sold in Australia in 2024.⁹

There is a compelling case for ANCAP to examine the comparative safety of these vehicles, given:

- their rising popularity in Australia
- their use as every day and recreational vehicles – driven by families and tradespeople in both metropolitan and regional areas
- their greater physical size and mass
- their untested risk to other vehicles and road users
- their relatively higher purchase price, along with the expectation of high specification and performance
- the recent arrival of additional peer models in this category

AUSTRALIAN NEW VEHICLE SALES PICKUP / CAB-CHASSIS SEGMENT NA OVER 7.0 TONNES GCM & NB MODELS

22,500+
NEW LARGE UTILITIES
SOLD

MAKE / MODEL	GVM	GCM	ADR CATEGORY	UNITS SOLD (2019) ¹⁰	UNITS SOLD (2024) ¹¹	MARKET SHARE (2019) ¹²	MARKET SHARE (2024) ¹³
Toyota Landcruiser 79 Series	3,510 kg	7,010 kg	NB1	9,222	11,929	4.57%	4.97%
RAM 1500	3,505 kg	7,285 kg	NB1	2,609	3,239	1.29%	1.35%
Ford F-150	3,220 kg	7,270 kg	NA	-	2,428	-	1.01%
Chevrolet Silverado 1500	3,300 kg	7,160 kg	NA	-	2,389	-	1.00%
Chevrolet Silverado 2500 HD*	4,495 kg	12,474 kg	NB1	-	1,473	-	0.61%
RAM 2500 / RAM 3500*	4,495 kg	12,695 kg	NB1	259	612	0.13%	0.26%
Toyota Tundra	3,536 kg	7,825 kg	NB1	-	469	-	0.20%
Ineos Grenadier Quartermaster	3,550 kg	7,000 kg	NB1	-	n/a	-	n/a
					22,539	5.99%	9.40%

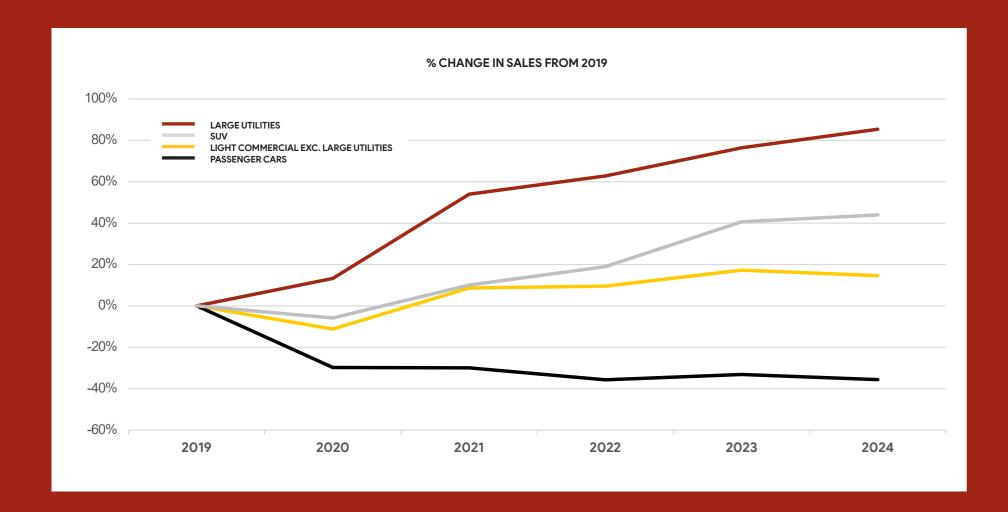
First introduced to the Australian market in the mid 1980s, the Toyota Landcruiser 79 Series continues to dominate its segment.

Having recently been reclassified into the larger NB category with a GVM of 3,510 kg, the Toyota Landcruiser 79 Series sold 11,929 units in Australia in 2024 - making it the top seller among its NB segment peers by 3.5 times.

The RAM 1500, Ford F-150, and Chevrolet Silverado 1500 were the next highest selling models in this cohort.

Consumer desire for, and subsequent market supply of the larger utes¹⁴ has seen sales of these vehicles nearly double since 2019.

Market share has notably increased, rising from 5.9% to more than 9.4% of the *Pickup / Cab-Chassis* segment.


Excluding the Toyota Landcruiser 79 Series, the market share of these vehicles has more than tripled - rising from 1.4% to 4.4%.

Sales of RAM Trucks (1500, 2500 and 3500), Chevrolet Silverado (1500 and 2500 HD), Ford F-150, and Toyota Tundra have increased by 270% since 2019.¹⁵

^{*} These models are also available with variants in the larger NB2 (GVM >4.5 tonnes) category. Driver licensing requirements for NB2 vehicles differ by jurisdiction and may require a Light Rigid (LR) or higher class truck licence.

Growth trajectory

SALES GROWTH BY VEHICLE SEGMENT

Vehicle selection

Utility vehicles are eligible for assessment if they meet the following criteria:

- Classified as NB, or NA with a Gross Combination Mass (GCM) of 7.0 tonnes or above; and
- Do not currently hold an ANCAP safety (star) rating.

The models selected for testing in this inaugural Large Utilities ADAS Safety Comparison are:

- Chevrolet Silverado 1500
- Ford F-150
- · RAM 1500
- Toyota Landcruiser 79 Series
- Toyota Tundra

Cumulatively, these five models accounted for 90% of all large ute sales in 2024.¹⁶

ADR CATEGORY	GVM	TYPICAL USE	MODEL EXAMPLES
NA - Light Goods Vehicles	Up to 3.5 tonnes	Regular utes and vans used by trades, families and fleets.	 Chevrolet Silverado 1500 Ford F-150 Ford Ranger Hyundai Staria-Load Isuzu D-Max Mitsubishi Triton Toyota Hilux
NB1 - Medium Goods Vehicles	3.5 to 4.5 tonnes	Larger pickup-style utes, vans, and light trucks.	 Chevrolet Silverado 2500 HD Ineos Grenadier Quartermaster Mercedes-Benz Sprinter RAM 1500 Toyota Landcruiser 79 Series Toyota Tundra
NB2 - Medium Goods Vehicles	4.5 to 12 tonnes	Small delivery trucks or larger vans.	 Fuso Canter Hyundai Mighty Iveco Daily RAM 3500 Volkswagen Crafter 55

Our approach

ACTIVE SAFETY FOCUS

Community views on large pickup-style utes are divided - some see them as beneficial, while others question their necessity.

To provide evidence beyond speculation, this first-look program set out to assess whether these vehicles can **detect** and **avoid** crashes through driver assistance technologies.

Testing focused on their interaction with other vehicles and vulnerable road users, including pedestrians, cyclists, and motorcyclists - to deliver clearer insight into their real-world safety performance.

When considering the potential risks these larger vehicles may present to other road users, along with the challenges of regional and remote driving, there is strong benefit to the widespread fitment of well-performing crash prevention features.

Systems such as:

- Autonomous emergency braking (AEB)
 can help prevent or reduce the severity of
 crashes at low and high speeds, including
 at intersections where larger pickups can
 potentially pose a greater risk.
- Lane support systems (LSS) can help keep the vehicle in its intended lane, reducing serious run-off road or oncoming crashes on highways and in regional or remote areas.
- **Driver assistance features** (like fatigue alerts, speed limit reminders and driver monitoring) can help manage fatigue and distraction.

Our testing explored whether these vehicles could avoid collisions in common scenarios including:

- a car at an intersection.
- a pedestrian crossing the road,
- a child when reversing,
- a car in front when approaching from behind,
- a cvclist
- an oncoming motorcyclist

A SPECIALISED ASSESSMENT

This specialised assessment leverages ANCAP's established test and assessment protocols to evaluate crash avoidance capability, focusing on the **fitment** and **effectiveness** of Advanced Driver Assistance Systems (ADAS).

The Vulnerable Road User Protection and Safety Assist pillars of ANCAP's existing four-pillar approach form the foundation of the Large Utilities assessments.

Performance in these areas is demonstrated through on-track testing.

Each tested scenario receives an individual performance score, which is then tallied to produce a percentage result for both the *Vulnerable Road User Protection* and *Safety Assist* pillars.

Based on these percentage scores, vehicles are awarded an overall safety grading of **Platinum**, **Gold**, **Silver**, **Bronze**, or **Not Recommended**.

BALANCED PERFORMANCE

To determine the overall grading of either Platinum, Gold, Silver, Bronze, or Not Recommended, ANCAP applies the balance principle – where the overall grading is set by the **lower** of the two pillar scores.

This gives equal weight to both pillars, ensuring poorer performance in one area cannot be offset by stronger performance in another.

Importantly, the balance principle not only ensures today's results are a fair reflection of performance, but also encourages continuous improvement in the design and specification of future models.

PERFORMANCE

GRADINGS

Test & Assessment Protocols

The Test & Assessment Protocol: Large Utilities Safety Assist (v1.0) comprises:

- ANCAP TEST PROTOCOL: AEB Car-to-Car Systems v4.3.1
- ANCAP TEST PROTOCOL: Lane Support Systems v4.3
- ANCAP TEST PROTOCOL: Speed Assist Systems v2.0
- ANCAP TEST PROTOCOL: AEB / LSS Vulnerable Road User Systems v4.5.1
- ANCAP TEST PROTOCOL: AEB Vulnerable Road User Systems v3.0.3 (for CPTA)
- ANCAP ASSESSMENT PROTOCOL: Safety Assist: Collision Avoidance v10.4.1
- ANCAP ASSESSMENT PROTOCOL: Vulnerable Road User Protection v11.4
- ANCAP ASSESSMENT PROTOCOL: Safety Assist: Safe Driving v10.4
- ANCAP ASSESSMENT PROTOCOL: Safety Assist v9.1 (for DSM)

Each vehicle was tested in 48 different scenarios, amounting to between 100 and 220 individual tests.

Testing on all models was undertaken by independent automotive test provider, ABMARC, at the Australian Automotive Research Centre (AARC) in Victoria.

CRASH TESTING

While physical crash testing and the measurement of occupant protection do not form part of initial assessments, insights gained from these early comparisons will be used to inform the development of a framework and roadmap for future testing and assessment. Driver vision assessments are also under consideration.

Models tested

NB & NA WITH GCM OVER 7.0 TONNES

CHEVROLET SILVERADO LTZ PREMIUM

3,300 kg GVM 7,160 kg GCM 748 kg Payload 2,552 kg Kerb Mass

AEB SENSOR Camera only

ASSEMBLY Remanufacture PLATINUM SWB

FORD F-150

3,315 kg GVM 7,365 kg GCM 704 kg Payload 2,611 kg Kerb Mass

> AEB SENSOR Radar + Camera

ASSEMBLY Remanufacture RAM 1500 LIMITED

3,505 kg GVM 7,285 kg GCM 782 kg Payload 2,722 kg Kerb Mass

AEB SENSOR Radar + Camera

ASSEMBLY Remanufacture TOYOTA LANDCRUISER
79 SERIES
WORKMATE

3,510 kg GVM 7,010 kg GCM 1,310 kg Payload 2,200 kg Kerb Mass

> AEB SENSOR Radar + Camera

> > ASSEMBLY Factory

TOYOTA TUNDRA LIMITED

3,536 kg GVM 7,825 kg GCM 744 kg Payload 2,792 kg Kerb Mass

AEB SENSOR Radar + Camera

ASSEMBLY Remanufacture STANDARD

AVAILABLE ON HIGHER VARIANTS

OPTIONAL

× NOT AVAILABLE

NOT APPLICABLE

Vehicle specifications

SAFETY FEATURES & TECHNOLOGIES

	ADR REQUIREMENT	CHEVROLET SILVERADO	FORD F-150	RAM 1500	TOYOTA LC79	TOYOTA TUNDRA
Autonomous Emergency Braking (AEB) - Car-to-Car	NA category (Mar 2023^) NB category (Nov 2023^)	•	•	•		
Autonomous Emergency Braking (AEB) - Car-to-Pedestrian	NA category (Mar 2023^)					
Autonomous Emergency Braking (AEB) - Car-to-Cyclist	NO	×				
Autonomous Emergency Braking (AEB) - Car-to-Motorcycle	NO	×				
Autonomous Emergency Braking (AEB) - Backover, Pedestrian	NO	×			×	×
Lane Departure Warning (LDW)	NO					
Emergency Lane Keeping (ELK) / Lane Keep Assist (LKA)	NO				×	
Blind Spot Monitoring (BSM)	NO				×	
Driver Monitoring System (DMS)*	NO					
Intelligent Seat Belt Reminder - Front row	NO				Driver only	
Intelligent Seat Belt Reminder - Second row	NO	#	#	#	×	#
Seat Belt Pre-tensioners - Front row	NO					
Seat Belt Pre-tensioners - Second row	NO	×	×		×	
Speed Control Function	NO	Manually set	Intelligent	Manually set	Intelligent	Manually set
Speed Limit Information Function (SLIF)	NO	×				×
Airbags - Driver & Front Passenger	NO					
Airbags - Side, Front row	NO				×	
Airbags - Side, Second row	NO	×	×		×	×
Airbags - Curtain	NA category (July 2018^)					
Airbags - Centre	NO	×	×	×	×	×

[^] Newly introduced models.

NOTE: Values presented are specific to the variant tested.

^{*} Assessed to 2020-2022 protocol requirements.

[#] Performance not meeting eligibility criteria / assessment thresholds.

Test Performance

THE RESULTS

LANE SUPPORT SYSTEMS	CHEVROLET SILVERADO 1500	FORD F-150 Platinum & Lariat	RAM 1500 Limited	TOYOTA LANDCRUISER 79 SERIES	TOYOTA TUNDRA
Emergency Lane Keeping (ELK)					
Lane Keep Assist (LKA)					
AUTONOMOUS EMERGENCY BRAKING CAR-TO-PEDESTRIAN	CHEVROLET SILVERADO 1500	FORD F-150 Platinum & Lariat	RAM 1500 Limited	TOYOTA LANDCRUISER 79 SERIES	TOYOTA TUNDRA
Adult crossing towards kerb (50%) - Day					
Adult crossing towards kerb (50%) - Night					
Adult crossing from kerb (25%) - Day					
Adult crossing from kerb (25%) - Night					
Adult crossing from kerb (75%) - Day					
Adult crossing from kerb (75%) - Night					
Child running (obstructed) - Day					
Child running (obstructed) - Night					
Adult walking along road (50%) - Day					
Adult walking along road (50%) - Night					
Adult walking along road (25%) - Day					
Adult walking along road (25%) - Night					
Adult crossing side road (farside), car turning					
Reversing					

AUTONOMOUS EMERGENCY BRAKING CAR-TO-CYCLIST	CHEVROLET SILVERADO 1500	FORD F-150 Platinum & Lariat	RAM 1500 Limited	TOYOTA LANDCRUISER 79 SERIES	TOYOTA TUNDRA
Cyclist crossing (farside)					
Cyclist crossing (nearside)					
Cyclist crossing from kerb (obstructed)					
Cyclist travelling along road (50%)					
Cyclist travelling along road (25%)					
AUTONOMOUS EMERGENCY BRAKING & LANE SUPPORT CAR-TO-MOTORCYCLIST	CHEVROLET SILVERADO 1500	FORD F-150 Platinum & Lariat	RAM 1500 Limited	TOYOTA LANDCRUISER 79 SERIES	TOYOTA TUNDRA
Driving towards stationary motorcyclist					

CAR-TO-MOTORCYCLIST	SILVERADO 1500	Platinum & Lariat	Limited	79 SERIES	TUNDRA
Driving towards stationary motorcyclist					
Driving towards braking motorcyclist					
Turning across path of an oncoming motorcyclist					
Lane change into oncoming motorcyclist					
Lane change into overtaking motorcyclist					

AUTONOMOUS EMERGENCY BRAKING CAR-TO-CAR	CHEVROLET SILVERADO 1500	FORD F-150 Platinum & Lariat	RAM 1500 Limited	TOYOTA LANDCRUISER 79 SERIES	TOYOTA TUNDRA
Driving towards stationary car					
Driving towards stationary car (FCW)					
Driving towards moving car					
Driving towards braking car					
Turning across path of an oncoming car					

FORD F-150 PLATINUM & LARIAT

APPLIES TO Platinum & Lariat variants **BUILD DATES^** January 2025 onwards

SERIES ON SALE DATES P702 (MY24) October 2025 onwards MARKET SEGMENT

COUNTRY OF MANUFACTURE

TESTED VARIANT Platinum

Dual frontal, side chest (1st row), side head

Remanufactured conversion (AUS)

ASSEMBLY

The Ford F-150 (Platinum & Lariat variants)

is fitted as standard with a camera/radar fusion collision avoidance system that is able to detect and react to potential collisions with pedestrians (adults or children), cyclists, and motorcyclists.

In car-to-car autonomous emergency braking tests, the Ford F-150 showed the highest level of performance of all models tested. It was able to avoid rear-end collisions with stationary vehicles when approaching from behind. It was also able to avoid rear-end collisions when approaching braking or slower moving cars in front.

The F-150 is also equipped with an Evasive Steering Assistance system which enhances driver steering inputs during an attempt to avoid a collision.

When interacting with pedestrians, the F-150 successfully avoided collisions in all test scenarios where an adult pedestrian crossed or walked along the path of the test vehicle, including while the vehicle was turning.

Mild limitations in its ability to prevent collisions with child or smaller-statured pedestrians were noted when the pedestrian dummy was walking out from behind an obstruction - such as a parked car.

Reverse AEB - which assists in common driveway and carpark environments where a pedestrian is walking behind the vehicle - was not assessed as performance was not predicted by the manufacturer.

Excellent results were observed for car-to-cyclist auto braking performance, with the Ford F-150 avoiding collisions in all bar one test scenario. This performance limitation was noted where the test vehicle was travelling at 10km/h and the cyclist crossing in front at a pace of 20km/h.

The ability of the Ford F-150 to detect and avoid or reduce the severity of a collision with a motorcyclist was also above that observed with other models tested. Positive results were seen for avoidance when driving towards a stationary or moderately braking motorcyclist, and when turning right in front of an oncoming motorcyclist.

The lane support system is able to recognise motorcyclists in an adjacent lane and override most lane changes to avoid side-swipe or head-on impacts. Detection and redirection

in unintended lane departures against unmarked road edges is one area of suggested improvement.

The speed assistance system successfully aids its driver to travel within applicable speed limits by providing accurate speed limit information through its traffic sign recognition function.

To assist in reducing fatigue or distraction-related crashes, the Ford F-150 monitors the steering torque applied by the driver to determine driver attentiveness. Where no steering inputs are detected, the F-150 escalates visual, audible and haptic (brake pulse) warnings to bring the driver's attention back to the road. The system can then activate the hazard lights and reduce the speed of the vehicle to minimise risk to other road users if driver attentiveness is not regained. None of the other models tested were observed to offer this more advanced warning sequence and capability.

Overall, the Platinum and Lariat variants of the MY24 Ford F-150 achieved a PLATINUM collision avoidance safety grading. This performance is the highest seen to date.

VULNERABLE ROAD USER **PROTECTION**

82%

19.71 out of **24.0**

AEB Car-to-Pedestrian

Crossing	2.7
Longitudinal	1.5
Turning	2.0
Reverse	0.0
ADEQUATE	6.27 out of 9.0

AEB Car-to-Cyclist

Crossing	3.6
Longitudinal	2.0
GOOD	5.68 out of 6.0

AEB & LSS Car-to-Motorcyclist

Longitudinal	3.00
Turning	2.01
Lateral	2.75
GOOD	7.76 out of 9.00

81%

Emergency Lane	Keeping	1.50
Lane Keeping As	sist	0.50
Human Machine Interface		0.50
GOOD	2.50 ou	t of 3.00

Seat Belt Reminder Driver Monitoring Syst		0.0
MARGINAL	0.50 out of	1.5

Speed Limit Information	n 1.08
Speed Control	1.50
GOOD	2.58 out of 3.00

SAFETY ASSIST

10.14 out of 12.5

AFR Car-to-Car

AED Car-to-Car	
Longitudinal	3.31
Turning	1.00
Human Machine Interface	e 0.25
GOOD 4.9	56 out of 5.00

Lane Support

GOOD	2.50 ou	it of 3.00
Human Machine Interface		0.50
Lane Keeping Assist	t	0.50
Emergency Lane Ke	eping	1.50

Occupant Status Monitoring

Driver Monitoring Sy	/stem	0.0
MARGINAL	0.50 ou	t of 1.5

Speed Assistance Systems

Spe	ed Limit Informa	ation 1.	.C
Spe	ed Control	1.	.5
GO	OD	2.58 out of 3.	0

NOTE: Earlier generation models, and variants outside those listed, have different safety specifications and have not been tested/assessed.

PLATINUM

4 81%

LARGE UTES TESTED 2025

RAM 1500 LIMITED

APPLIES TO Limited variant

BUILD DATES^ February 2025 onwards

SERIES DT (MY25) ON SALE DATES

MARKET SEGMENT

AIRBAGS

COUNTRY OF MANUFACTURE

TESTED VARIANT Limited

March 2025 onwards

Dual frontal, side chest, side head

ASSEMBLY

Remanufactured conversion (AUS)

The RAM 1500 Limited is fitted with a comprehensive range of active safety features.

Standard equipment includes a radar/camera autonomous emergency braking (AEB) system, an active lane support system, blind spot monitoring, reverse AEB, adaptive cruise control, and speed assistance.

The AEB system fitted to Limited variants is capable of detecting other vehicles, pedestrians, cyclists, and motorcyclists. A driver monitoring system is also fitted, along with visual & audible seatbelt reminders for front row seats. Second row seating positions are, however, not equipped with seat belt reminders and this limited its score.

Performance testing of the crash avoidance features fitted to the RAM 1500 Limited revealed positive results. In car-to-car AEB scenarios, the RAM avoided collisions across a wide range of speeds, including low, mid and high-speed tests, as well as complex intersection scenarios where most of its tested competitors proved less capable.

In AEB car-to-pedestrian testing, full points were scored for test scenarios where the adult pedestrian was walking in front of, and in the

same direction as the RAM. In turning scenarios, where the RAM 1500 Limited was entering a road with a pedestrian stepping out from the kerb and crossing in front, all impacts were avoided. Some limitations were observed in child pedestrian tests, particularly at night, but overall results were stronger than other models tested.

AEB car-to-cyclist performance was good. The RAM 1500 detected cyclists travelling in the same direction and crossing its path, intervening to avoid impacts in most scenarios.

Car-to-motorcyclist tests showed moderate results. The RAM 1500 was able to avoid or mitigate impacts with stationary and braking motorcyclists in rear-end scenarios, yet poorer performance was seen when turning in front of or changing lanes into the path of an oncoming motorcyclist.

The RAM 1500 is the only model tested to be fitted with pedestrian-detecting AEB Backover - a feature not vet widely available in many passenger cars. While performance was Weak, this is a positive feature inclusion with the potential to offer protection in high-risk driveways and carparks.

Lane keep assist (LKA) provided timely intervention, steering the RAM back into its lane when drifting towards a solid or dashed line marking. The RAM 1500 was the only model of those tested to score in the emergency lane keep (ELK) test scenario involving the road edge with no line marking.

The RAM's speed assistance system worked effectively, though the system lacks more advanced camera or map-based speed sign recognition functionality seen in many passenger cars and smaller utes.

The RAM's indirect driver monitoring system (DMS) offers basic functionality but does not extend to advanced attention or fatigue detection.

The RAM 1500 Limited achieved an overall **GOLD** safety grading. It stands ahead of the Toyota Landcruiser 79 Series, Toyota Tundra and Chevrolet Silverado 1500, offering broader fitment and stronger performance results across most test scenarios.

VULNERABLE ROAD USER **PROTECTION**

74%

17.82 out of 24.0

AEB Car-to-Pedestrian

Crossing	2.57
Longitudinal	1.50
Turning	2.00
Reverse	0.50
ADEQUATE	6.57 out of 9.00
ADEGUATE	0.37 Out 01 7.00

AEB Car-to-Cyclist

Crossing	3.7
Longitudinal	2.0
GOOD	5.75 out of 6.0

AEB & LSS Car-to-Motorcyclist

Longitudinal	3.00
Turning	0.00
Lateral	2.50
ADEQUATE	5.50 out of 9.00

SAFETY ASSIST

70% 8.81 out of 12.5

AEB Car-to-Car

Longitudinal		3.47
Turning		0.00
Human Machine I	nterface	0.25
ADEQUATE	3.72 out	t of 5.00

Lane Support

Emergency Lane Kee	eping	2.00
Lane Keeping Assist		0.50
Human Machine Inter	rface	0.50
GOOD	3.00 ou	t of 3.00

Occupant Status Monitoring

Seat Belt Reminde	r 0.00
Driver Monitoring S	System 0.50
MARGINAL	0.50 out of 1.50

Speed Assistance Systems

Speed Limit Informa	ation 1.09
Speed Control	0.50
ADEQUATE	1.59 out of 3.00

GOLD

70%

LARGE UTES TESTED 2025

TOYOTA LANDCRUISER 79 SERIES

APPLIES TO

BUILD DATES Single Cab & Double Cab variants January 2024* onwards

J7 (MY24)

ON SALE DATES

January 2024* onwards

MARKET SEGMENT

TESTED VARIANT Double Cab Cab-Chassis Workmate

Single Cab: Dual frontal, side head, knee Double Cab: Dual frontal only

ASSEMBLY Factory built

COUNTRY OF MANUFACTURE

The current generation Toyota Landcruiser 79 **Series** is fitted with a moderate range of active safety features including a radar/camera-based autonomous emergency braking (AEB) system; lane departure warning system; and speed assistance functions.

Its AEB system can detect other vehicles. pedestrians, cyclists, and motorcyclists.

The Landcruiser 79 Series is not fitted with reversing AEB, blind spot monitoring, or any form of active lane keeping. Seatbelt reminders are provided for the driver only.

The LC79 performed reasonably well in car-tocar AEB tests, avoiding most collisions at low and higher speeds. Intersection scenarios, however. proved more challenging, with the narrower fieldof-view of its camera sensor limiting its ability to detect crossing traffic.

Car-to-pedestrian AEB tests showed solid results with adult pedestrians during both day and night test scenarios, yet weaker performance was seen in child pedestrian tests, in darker conditions.

The LC79's score in this area was secondhighest, only just behind that of the RAM 1500 Limited.

Testing of car-to-cyclist auto braking highlighted limitations. Performance was better when cyclists were travelling in the same direction as the LC79, however the system was less effective when cyclists crossed in front or appeared from behind an obstructing vehicle.

The LC79 can intervene to prevent rear-end crashes with stationary and braking motorcyclists ahead. The LC79 cannot, however, brake or steer to avoid a motorcyclist when turning in front of an oncoming or overtaking motorcyclist.

The lane departure warning (LDW) system provides audible, haptic, and visual alerts to the driver, however as the LC79 is not fitted with an active lane support system (LKA or ELK), it cannot actively prevent run-off-road, sideswipe or head-on crashes.

The intelligent speed limiting system worked reliably, controlling the vehicle speed steadily to within 3km/h of the speed displayed in the instrument cluster.

The omission of common safety features such as lane support, seat belt reminders, blind spot monitoring, and supplementary warnings limited its overall performance in this assessment.

Overall, the Toyota Landcruiser 79 Series achieved a **SILVER** grading, demonstrating sound performance of fitted systems, yet falling short in broader safety specification.

Compared with the Ford F-150, RAM 1500. Toyota Tundra, and Chevrolet Silverado 1500. the LC79 remains basic in feature fitment, but where features are available, performance is generally robust.

VULNERABLE ROAD USER **PROTECTION**

56%

13.58 out of 24.0

AEB Car-to-Pedestrian

Crossing	3.0
Longitudinal	1.4
Turning	2.0
Reverse	0.0
ADEQUATE	6.46 out of 9.0

AEB Car-to-Cyclist

Crossing	2.1
Longitudinal	2.0
ADEQUATE	4.12 out of 6.0

AEB & LSS Car-to-Motorcyclist

Longitudinal	3.0
Turning	0.0
Lateral	0.0
MARGINAL	3.00 out of 9.0

SAFETY ASSIST

55% 6.88 out of 12.5

AEB Car-to-Car

Longitudinal		3.36
Turning		0.44
Human Machine Inf	terface	0.00
GOOD	3.80 ou	t of 5.00

Lane Support

WEAK	0.50 ou	t of 3.00
Human Machine	Interface	0.50
Lane Keeping Ass	sist	0.00
Emergency Lane	Keeping	0.00

Occupant Status Monitoring

Seat Belt Remind	er 0.0)(
Driver Monitoring	System 0.5	(
MARGINAL	0.50 out of 1.5	C

Speed Assistance Systems

ADEQUATE	2.08 out of 3.00
Speed Control	1.00
Speed Limit Info	rmation 1.08

NOTE: Earlier generation models, and variants outside those listed, have different safety specifications and have not been tested/assessed.

^{*} Single Cab Cab-Chassis and Double Cab Cab-Chassis vehicles built from September 2022 are equipped with the same safety features as the models assessed within this *Large Utilities ADAS Safety Comparison* and are therefore expected to offer the same level of ADAS

NOTE: Single Cab Cab-Chassis vehicles built prior to 1 January 2024 hold a separate ANCAP

TOYOTA TUNDRA

APPLIES TO Limited & Platinum variants

SERIES XK70 (MY23) BUILD DATES^
October 2023 onwards

ON SALE DATES November 2023 onwards MARKET SEGMENT

COUNTRY OF MANUFACTURE USA

TESTED VARIANT Limited

AIRBAGS

Dual frontal, side chest (1st row), side head

ASSEMBLY

Remanufactured conversion (AUS)

The **Toyota Tundra** is equipped with a relatively broad range of modern active safety features including a radar/camera fusion system. Autonomous emergency braking (AEB), an active lane support system, blind spot monitoring, manual speed assistance function, and a basic (indirect) driver monitoring system are all fitted as standard.

The Tundra's AEB system can detect the full range of road users including other vehicles, pedestrians, cyclists, and motorcyclists in forwards-travel. Reverse AEB is not offered.

Performance testing of the crash avoidance features fitted to the Tundra revealed mixed performance.

In car-to-car AEB testing, the Tundra avoided most rear-end collisions at low and higher speeds when approaching stationary, moving and braking vehicles.

Auto brake functionality when turning across the path of an oncoming car, however, proved challenging. Car-to-pedestrian avoidance - both in daylight and at night - was good. Weaker performance was seen when attempting to avoid a collision with a child pedestrian.

Varied performance was seen in car-to-cyclist testing. The system performed well when cyclists were travelling in the same direction as the Tundra (full points scored), but had limitations in scenarios where the cyclist was crossing in front.

Crash avoidance was reliable when approaching a stationary motorcyclist from behind. When approaching a slowing (braking) motorcyclist, an impact occurred when the Tundra was following closely at a distance of 12 metres. At greater following distances (around 40 metres), the Tundra's AEB system successfully avoided a collision.

The AEB system fitted to the Tundra does not function in turn-across-path intersection scenarios with an oncoming motorcyclist.

Lane departure warning (LDW), lane keep assist (LKA) and emergency lane keeping (ELK) are standard features.

The Tundra's lane support system can detect solid and dashed line markings on the left and right, and provide some steering input to assist in redirecting the Tundra if wandering from its intended lane. This system works by recognising line markings and the vehicle's position but does not consider the presence of a 'threat' vehicle in an adjacent lane.

The manually-set speed assistance function (cruise control) on the Tundra worked reliably, and its indirect driver monitoring system (DMS) added a basic safeguard. The more advanced attention and fatigue-detection capabilities are however absent.

Overall, the Toyota Tundra achieved a **SILVER** grading. While it offers a broader set of safety features than the Toyota Landcruiser 79 Series and Chevrolet Silverado 1500, its performance sits close to par with its established Toyota stablemate, but does not reach the more rounded and consistent safety performance of the Ford F-150 or RAM 1500.

VULNERABLE ROAD USER PROTECTION

56%

13.47 out of 24.0

AEB Car-to-Pedestrian

Crossing	2.84
Longitudinal	1.49
Turning	0.00
Reverse	0.00
MARGINAL	4.33 out of 9.00

AEB Car-to-Cyclist

Crossing	2.2
Longitudinal	2.0
ADEQUATE	4.20 out of 6.0

AEB & LSS Car-to-Motorcyclist

Longitudinal	2.4
Turning	0.0
Lateral	2.5
ADEQUATE	4.94 out of 9.0

SAFETY ASSIST

50%6.31 out of 12.5

AEB Car-to-Car

SILVER 50%

LARGE UTES TESTED 2025

Longitudinal		3.31
Turning		0.00
Human Machine Interface		0.00
ADEQUATE	3.31 ou	t of 5.00

Lane Support

Emergency Lane Keep	oing	1.00
Lane Keeping Assist		0.50
Human Machine Interf	ace	0.50
ADEQUATE	2.00 ou	ıt of 3.00

Occupant Status Monitoring

MARGINAL	0.50 out of 1.5
Driver Monitoring	System 0.5
Seat Belt Remind	er 0.0

Speed Assistance Systems

Speed Limit Infor	mation 0.00
Speed Control	0.50
WEAK	0.50 out of 3.00

CHEVROLET **SILVERADO 1500**

APPLIES TO

LTZ Premium & ZR2* variants

SERIES T1 (MY24)

BUILD DATES^ February 2025 onwards

ON SALE DATES February 2025 onwards MARKET SEGMENT

COUNTRY OF MANUFACTURE

TESTED VARIANT LTZ Premium

Dual frontal, side chest (1st row), side head

ASSEMBLY

Remanufactured conversion (AUS)

The Chevrolet Silverado 1500 is fitted with a camera-only AEB system that detects vehicles and pedestrians. It is not capable of detecting cyclists, and provides only limited detection of motorcyclists. Standard equipment includes lane departure warning, blind spot monitoring, and manually-set adaptive cruise control.

The absence of reverse AEB, cyclist detection, and more advanced speed or monitoring systems leaves notable gaps in its safety package. Eligible seatbelt reminders are provided for front seat occupants only.

Performance testing of the Silverado showed strong car-to-car auto brake performance in low and moderate-speed tests, avoiding impacts across a wide range of speeds. However, performance deteriorated when the speed difference between the test vehicle and the target vehicle exceeded 50 km/h. Intersection scenarios further highlighted the limitations of its camera-only system, with some crossing traffic not detected in time.

In car-to-pedestrian testing (forwards travel), performance was good with adult pedestrians during daylight conditions but weaker at night or in glare. This is typical of camera-only systems. Encouragingly, the Silverado delivered the best result of all vehicles tested in the child pedestrian 'obstructed' scenario.

Test scenarios involving the motorcyclist revealed poorer results. The system was able to avoid impacts in some rear-end tests with a stationary or braking motorcyclist, but performance was poor in more complex intersection situations.

The Silverado has a lane support system (LSS) capable of redirecting the vehicle if the system detects an unintended lane departure. This performance is based on the recognition of line markings and on-road vehicle position, and is not influenced by the presence of another vehicle in an adjacent lane.

Emergency lane keeping (ELK) works well with lane departures involving a solid line marking on either side of the vehicle, however it did not meet

performance criteria when deviating towards an unmarked road edge (shoulder).

A basic level of speed control function is provided by way of manually-set adaptive cruise control. When set, the Silverado can control the vehicle's speed within 4km/h of the speed displayed in the instrument cluster. A more sophisticated camera or map-based speed limit information function is not provided.

A heads-up display is fitted, earning recognition as a supplementary warning.

The Chevrolet Silverado achieved a **BRONZE** grading. Compared with its competitors, the Silverado's active safety line-up is functional but less sophisticated.

Compared with each of the other large ute models tested in this inaugural comparison, the Chevrolet Silverado lags in feature fitment and performance, highlighting the need for broader system coverage and more consistent results in vulnerable road user scenarios.

VULNERABLE ROAD USER **PROTECTION**

27%

6.59 out of 24.0

AEB Car-to-Pedestrian

Crossing	2.1
Longitudinal	1.4
Turning	0.0
Reverse	0.0
MARGINAL	3.59 out of 9.0

AEB Car-to-Cyclist

Crossing	0.0
Longitudinal	0.0
POOR	0.00 out of 6.0

AEB & LSS Car-to-Motorcyclist

Longitudinal	0.51
Turning	0.00
Lateral	2.50
MARGINAL	3.01 out of 9.00

SAFETY ASSIST

49%

6.21 out of 12.5

AEB Car-to-Car

Longitudinal		2.96
Turning		0.00
Human Machine Interface		0.25
ADEQUATE	3.21 out of 5.00	

Lane Support

Emergency Lane K	eeping	1.00
Lane Keeping Assis	st	0.50
Human Machine Int	erface	0.50
ADEQUATE	2.00 ou	ıt of 3.00

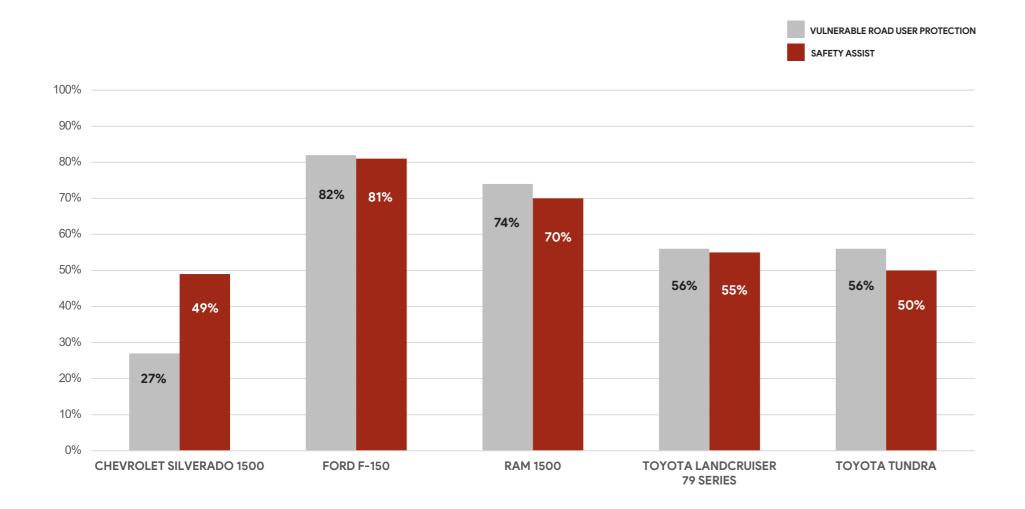
Occupant Status Monitoring

Seat Belt Remind	er 0.0	C
Driver Monitoring	System 0.5	C
MARGINAL	0.50 out of 1.5	C

Speed Assistance Systems

Speed Limit Info	rmation 0.0
Speed Control	0.5
WEAK	0.50 out of 3.0

BRONZE


LARGE UTES TESTED 2025

^{*} Results from this assessment apply to the Chevrolet Silverado 1500 ZR2; however, as its GCM is below 7.0 tonnes, it falls outside the program's defined scope.

Performance

PILLAR SCORES BY MODEL

Performance insights

WHAT WE LEARNED

This inaugural Large Utilities ADAS Safety Comparison provides the first clear view of how five of Australia's popular large utes can assist in avoiding crashes and protecting vulnerable road users.

Across the models tested, the results present an encouraging baseline.

Vehicle specification and performance extend beyond **regulatory** minimums, showing that manufacturers are already taking proactive steps to deliver advanced safety features.

By establishing this **non-regulatory** benchmark, these ANCAP safety gradings provide a clear reference point that recognises these efforts and encourages further safety innovation.

Each model tested demonstrated strengths in certain scenarios. Testing also identified gaps where further development is needed. Together, these outcomes highlight the advances already made and the opportunities for future improvement.

HIGHLIGHTS

- Relatively strong performance in car-to-car autonomous braking, with impacts avoided in many low and mid-speed scenarios.
- Encouraging results in adult pedestrian detection and avoidance, particularly in daylight conditions.
- Emerging capability in cyclist and motorcyclist auto braking scenarios.
- Broad fitment of lane departure warning, blind spot monitoring, seatbelt pretensioners, and dual frontal airbags.

AREAS FOR IMPROVEMENT

- Inconsistent protection in **child pedestrian** auto braking scenarios.
- Absence of active lane support on Toyota Landcruiser 79 Series.
- Absence of cyclist detecting auto braking on Chevrolet Silverado.
- Relatively limited performance in motorcyclist detection and collision prevention.
- Lack of reversing AEB (pedestriandetecting) on some models, reducing safety in driveways, carparks and urban areas.
- Basic (indirect) driver monitoring systems.

Performance insights

WHAT WE LEARNED

Of the five models tested, the Ford F-150 (Platinum and Lariat variants) delivered the best overall package of active safety features and reliable collision avoidance performance - scoring a Platinum grading.

The RAM 1500 (Limited variant) also demonstrated high levels of active safety specification and performance, leading to a Gold grading.

The Toyota Landcruiser 79 Series and Toyota Tundra sit mid-field with Silver gradings, reflecting reliable performance in some areas, and opportunities for improvement in others.

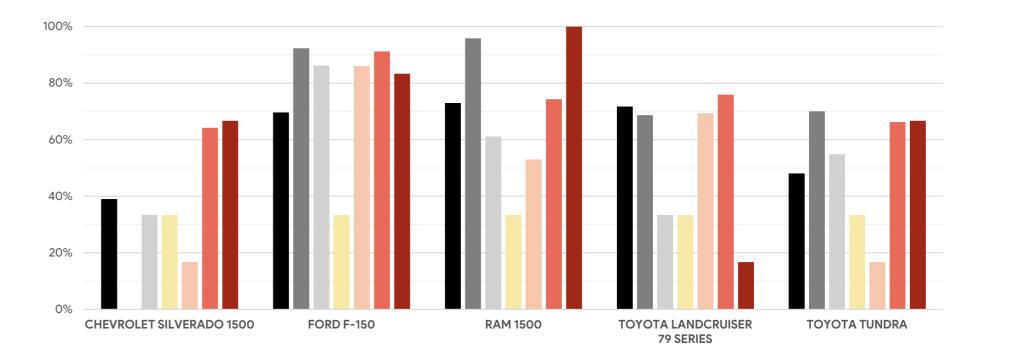
The Chevrolet Silverado achieved a Bronze grading, showing competence in foundational car-to-car autonomous braking but less capability when interacting with vulnerable road users.

Encouragingly, when compared with their smaller ute counterparts such as the Ford Ranger, Toyota HiLux and Mitsubishi Triton, these larger utes are not too far behind in terms of active safety performance.

This is a promising outcome given that smaller utilities have benefited from more than 30 years of ANCAP scrutiny, with manufacturers progressively lifting standards in response.

One of the advantages of this new *Large Utilities* program is that it brings models not previously assessed into scope, enabling ANCAP to engage with and share insights directly with manufacturers to encourage targeted improvements.

Overall, this initial comparison demonstrates that advanced safety systems are beginning to take hold in the large utility segment, while also pointing to clear priorities for further enhancements – particularly child pedestrian detection, reverse AEB, and consistent capability when interacting with cyclists and motorcyclists.


Ongoing upgrades to feature availability and effectiveness will be key to lifting safety outcomes across this growing market segment.

This inaugural program has set a strong foundation, with comparable safety gradings now available for five high-profile and high-selling large utes.

Active safety performance

BY MODEL

Where to from here?

FUTURE FOCUS

The results of this inaugural *Large Utilities ADAS* Safety Comparison establish a solid safety baseline and segment benchmark – providing information to:

- help guide consumer and fleet purchasing decisions;
- provide a reference point for models not yet tested; and
- assist manufacturers in the development of future product updates.

COMING SOON

ANCAP is working with manufacturers to expand this program and expects to have additional safety information available for a broader range of large ute models/variants from 2026.

This growing list of results will provide consumers with **additional comparison** and **choice**.

LARGE UTILITIES ROADMAP

As with ANCAP's well-established market encouragement approach that promotes continuous improvement, a *Large Utilities* roadmap is being developed to help guide manufacturer product planning.

The test and grading criteria applied through the Large Utilities ADAS Safety Comparison protocols are scheduled to remain in place until the end of 2026 – providing the opportunity for remaining models and/or variants within the segment to be examined against comparable criteria.

This timeframe also provides the potential for models with an existing grading to be reassessed if/when their safety specifications are upgraded.

Learnings from these early comparisons will inform the development of a framework for future testing and assessment, with physical crash protection and driver vision under consideration.

66

Australians love their utes, and with their growing popularity comes a responsibility for manufacturers to deliver the highest levels of safety.

These first-look results show which models are leading today, and set a clear benchmark for others to build on in the future.

7

Carla Hoorweg CEO, ANCAP SAFETY

Variant applicability

MAKE / MODEL / VARIANT^	BODY TYPE	ENGINE / POWERTRAIN	DRIVETRAIN	GRADING APPLICABLE	SAFETY GRADING
Chevrolet Silverado 1500 LTZ Premium ◆	Dual Cab Utility	6.2 litre petrol	4x4	\checkmark	BRONZE
Chevrolet Silverado 1500 ZR2*	Dual Cab Utility	6.2 litre petrol	4x4	\checkmark	BRONZE
Chevrolet Silverado 2500 HD LTZ Premium	Dual Cab Utility	6.6 litre diesel turbo V8	4x4	×	-
Ford F-150 Platinum ◆	Dual Cab Utility	3.5 litre petrol twin turbo V6	4x4	\checkmark	PLATINUM
Ford F-150 Lariat	Dual Cab Utility	3.5 litre petrol twin turbo V6	4x4	\checkmark	PLATINUM
Ford F-150 XLT	Dual Cab Utility	3.5 litre petrol twin turbo V6	4x4	×	-
INEOS Grenadier Quartermaster Trailmaster	Dual Cab Utility	3.0 litre petrol/diesel turbo	4x4	×	-
INEOS Grenadier Quartermaster Fieldmaster	Dual Cab Utility	3.0 litre petrol/diesel turbo	4x4	×	-
RAM 1500 Limited ◆	Dual Cab Utility	3.0 litre twin turbo in-line six-cylinder petrol	4x4	\checkmark	GOLD
RAM 1500 Laramie Sport	Dual Cab Utility	3.0 litre twin turbo in-line six-cylinder petrol	4x4	×	-
RAM 1500 Rebel	Dual Cab Utility	3.0 litre twin turbo in-line six-cylinder petrol	4x4	×	-
RAM 2500 Laramie	Dual Cab Utility	6.7 litre diesel turbo	4x4	×	-
RAM 3500 Laramie	Dual Cab Utility	6.7 litre diesel turbo	4x4	×	-
Toyota Landcruiser 79 Series Workmate Single Cab	Single Cab Utility	2.8 litre petrol	4x4	\checkmark	SILVER
Toyota Landcruiser 79 Series Workmate Double Cab ◆	Dual Cab Utility	2.8 litre petrol	4x4	\checkmark	SILVER
Toyota Landcruiser 79 Series GX Single Cab	Single Cab Utility	2.8 litre petrol	4x4	\checkmark	SILVER
Toyota Landcruiser 79 Series GXL Single Cab	Single Cab Utility	2.8 litre petrol	4x4	\checkmark	SILVER
Toyota Landcruiser 79 Series GXL Single Cab	Single Cab Utility	4.5 litre diesel	4x4	\checkmark	SILVER
Toyota Landcruiser 79 Series GXL Double Cab	Dual Cab Utility	4.5 litre diesel	4x4	\checkmark	SILVER
Toyota Tundra Limited ◆	Dual Cab Utility	3.5 litre petrol turbo hybrid	4x4	\checkmark	SILVER
Toyota Tundra Platinum	Dual Cab Utility	3.5 litre petrol turbo hybrid	4x4	\checkmark	SILVER

✓ COVERED BY THIS RATING X NOT COVERED BY THIS RATING ◆ TESTED VARIANT - NOT ASSESSED

^ Excludes vehicles imported under the Specialist and Enthusiast Vehicles Scheme.

Test scenario glossary

CCRs: Car-to-Car Rear Stationary

Where the test car travels forwards toward the rear of a stationary car in front. Assesses the ability of the test car to avoid a rear-end crash with the stationary car when no braking is applied.

CCRm: Car-to-Car Rear Moving

Where the test car travels forwards toward a slowermoving car ahead. Assesses the ability of the test car to avoid or mitigate a rear-end collision with the slower car when no braking is applied.

CCRb: Car-to-Car Rear Braking

Where the test car travels forwards toward a car travelling at a constant speed that then decelerates. Assesses the ability of the test car to avoid or mitigate a rear-end collision with the braking car.

CCFtap: Car-to-Car Front Turn-Across-Path

Where the test car turns right across the path of an oncoming car. Assesses the ability of the test car to avoid or mitigate a frontal collision with the oncoming vehicle.

CPFA-50: Car-to-Pedestrian Farside Adult 50%

Where the test car travels forwards toward an adult pedestrian crossing from the far side of the road (driver's side). Assesses the ability of the car to avoid or mitigate a collision with the pedestrian at 50% vehicle overlap when no braking is applied.

CPNA-25: Car-to-Pedestrian Nearside Adult 25%

Where the test car travels forwards toward an adult pedestrian crossing from the near side of the road (passenger side). Assesses the ability of the car to avoid or mitigate a collision with the pedestrian at 25% vehicle overlap when no braking is applied.

CPNA-75: Car-to-Pedestrian Nearside Adult 75%

Where the test car travels forwards toward an adult pedestrian crossing from the near side of the road (passenger side). Assesses the ability of the car to avoid or mitigate a collision with the pedestrian at 75% vehicle overlap when no braking is applied.

CPNCO-50: Car-to-Pedestrian Nearside Child Obstructed 50%

Where the test car travels forwards toward a child pedestrian running from behind parked vehicles on the passenger side. Assesses the ability of the car to avoid or mitigate a collision with the child at 50% vehicle overlap when no braking is applied.

CPLA-50: Car-to-Pedestrian Longitudinal Adult 50%

Where the test car travels forwards toward an adult pedestrian walking in the same direction ahead of the vehicle. Assesses the ability of the car to avoid or mitigate a collision with the pedestrian at 50% vehicle overlap when no braking or evasive steering is applied.

CPLA-25: Car-to-Pedestrian Longitudinal Adult 25%

Where the test car travels forwards toward an adult pedestrian walking in the same direction ahead of the vehicle. Assesses the ability of the car to avoid or mitigate a collision with the pedestrian at 25% vehicle overlap when no braking or evasive steering is applied.

CPTA-50: Car-to-Pedestrian Turning Adult

Where the test car turns toward an adult pedestrian crossing a side road in the opposite direction. Assesses the ability of the car to avoid or mitigate a collision at 50% vehicle overlap when no braking is applied.

CPRm: Car-to-Pedestrian Reverse Adult/Child Moving 50%

Where the test car reverses toward an adult or child pedestrian crossing its path from the passenger side. Assesses the ability of the car to avoid or mitigate a collision with the pedestrian at 50% vehicle overlap when no braking is applied.

CPRs: Car-to-Pedestrian Reverse Adult/Child Stationary

Where the test car reverses toward a stationary adult or child pedestrian. Assesses the ability of the car to avoid or mitigate a collision at 25%, 50%, or 75% vehicle overlap when no braking is applied.

^{*} Results from this assessment apply to the Chevrolet Silverado 1500 ZR2; however, as its GCM is below 7.0 tonnes, it falls outside the program's defined scope.

CBNA-50: Car-to-Cyclist Nearside Adult 50%

Where the test car travels forwards toward a cyclist crossing from the near side of the road (passenger side). Assesses the ability of the car to avoid or mitigate a collision with the cyclist at 50% vehicle overlap when no braking is applied.

CBFA-50: Car-to-Cyclist Farside Adult 50%

Where the test car travels forwards toward a cyclist crossing from the far side of the road (driver's side). Assesses the ability of the car to avoid or mitigate a collision with the cyclist at 50% vehicle overlap when no braking is applied.

CBNAO: Car-to-Cyclist Nearside Adult Obstructed 50%

Where the test car travels forwards toward a cyclist emerging from behind a parked car on the near side (passenger side). Assesses the ability of the car to avoid or mitigate a collision with the cyclist at 50% vehicle overlap when no braking is applied.

CBLA-50: Car-to-Cyclist Longitudinal Adult 50%

Where the test car travels forwards toward a cyclist riding in the same direction ahead of the vehicle. Assesses the ability of the car to avoid or mitigate a collision at 50% vehicle overlap when no braking or evasive steering is applied.

CBLA-25: Car-to-Cyclist Longitudinal Adult 25%

Where the test car travels forwards toward a cyclist riding in the same direction ahead of the vehicle. Assesses the ability of the car to avoid or mitigate a collision at 25% vehicle overlap when no braking or evasive steering is applied.

CMRs: Car-to-Motorcyclist Rear Stationary

Where the test car travels forwards toward a stationary motorcycle. Assesses the ability of the car to avoid or mitigate a rear-end collision with the stationary motorcyclist when no braking is applied.

CMRb: Car-to-Motorcyclist Rear Braking

Where the test car travels forwards toward a motorcyclist travelling at a constant speed that then decelerates. Assesses the ability of the car to avoid or mitigate a rear-end collision with the braking motorcyclist when no braking is applied.

CMFtap: Car-to-Motorcyclist Front Turn-Across-Path

Where the test car turns right across the path of an oncoming motorcyclist. Assesses the ability of the car to avoid or mitigate a frontal collision with the oncoming motorcycle when no braking is applied.

ELK: Emergency Lane Keeping

A lane support system that detects high-risk lane departures likely to lead to a collision, including over marked and unmarked road edges. Provides active steering or braking to help keep the vehicle within its lane.

LKA: Lane Keep Assist

A lane support system that detects lane markings and provides steering assistance to help keep the vehicle within its lane.

LDW: Lane Departure Warning

A driver assistance system that detects lane markings and warns the driver when the vehicle begins to drift out of its lane without indicating. Provides visual and audible alerts.

SLIF: Speed Limit Information Function

A system that displays the current speed limit to the driver using map-based and/or camera-based technology.

SCF: Speed Control Function

A system that controls vehicle speed through a manually set limiter or cruise control, intelligent speed limiter, or intelligent adaptive cruise control (iACC).

SBR: Seat Belt Reminder

A system that detects occupant presence and issues an audible and visual warning if a seatbelt is unfastened.

DMS: Driver Monitoring System

A system that monitors the driver for signs of fatigue or inattention and provides warnings or corrective actions when a high-risk state is detected.

HMI: Human Machine Interface

Any supplementary feature that enhances occupant safety, improves collision avoidance, or provides additional driver warnings when a potential collision is detected. Examples include dynamic seatbelt retractors, Evasive Steering Assist (ESA), and Heads-Up Display (HUD).

- VFACTS Australian New Vehicle Sales, 2024.
- 2 ANCAP test and rating criteria changes over time. Details available at www.ancap.com.au.
- 3 VFACTS Australian New Vehicle Sales, 2024.
- 4 https://www.iihs.org/news/detail/suvs-other-large-vehicles-often-hit-pedestrians-while-turning
- 5 VFACTS Australian New Vehicle Sales, 2024.
- 6 RAM 1500, RAM 2500 and RAM 3500.
- 7 VFACTS Australian New Vehicle Sales, 2019-2024.
- 8 NB and NA category utilities with Gross Combination Mass (GCM) of 7.0 tonnes or greater.
- 9 https://www.iihs.org/news/detail/vehicles-with-higher-more-vertical-front-ends-pose-greater-risk-to-pedestrians
- 10 Excludes vehicles imported under the Specialist and Enthusiast Vehicles Scheme.
- 11 Excludes vehicles imported under the Specialist and Enthusiast Vehicles Scheme.
- 12 VFACTS Pickup / Cab-Chassis segment.
- 13 VFACTS Pickup / Cab-Chassis segment.
- 14 Chevrolet Silverado 1500, Chevrolet Silverado 2500 HD, Ford F-150, RAM 1500, RAM 2500, RAM 3500, Toyota Landcruiser 79 Series, and Toyota Tundra.
- 15 VFACTS Australian New Vehicle Sales, 2019-2024.
- 16 VFACTS Australian New Vehicle Sales, 2024.

ANCAP.COM.AU/LARGE-UTES